General Physics II Review

Ch. 21 Coulomb’s Law

Charge

  • Plastic rod rubbed on fur: negatively charged
  • Glass rod rubbed on silk: positively charged

The total (net) electric charge of an isolated system is conserved.

  • Charging by induction (without losing its own charge)

e=1.60×1019C

  • Quantized Charge
  • Millikin Oil-Drop Experiment

Coulomb’s Law

F=k|q1q2|r2

k=14πϵ0=8.99×109Nm2/C2

ϵ0=8.85×1012C2/Nm2

  • k is the electromagnetic constant
  • ϵ0 is the permittivity constant
  • Principle of Superposition

Ch. 22 Electric Field

Definition

F⃗ = qE⃗.

E=Fq0=k|q|r2=14πϵ0|q|r2

Cases

The key to integrate, is find the relation between dq  and charge density (as well as length or area)

Uniformly Charged Line

Ex=14πϵ0Q2aa+axdy(x2+y2)3/2=Q4πϵ01xx2+a2

If the line is very long, a ≫ x

E=λ2πϵ0r

Uniformly Charged Ring

E=dEcosθ=zz2+R2λ4πϵ0(z2+R2)02πRds=qz4πϵ0(z2+R2)3/2.

If the charged ring is at large distance, z ≫ R

E=14πϵ01z2.

Uniformly Charged Disk

dq  = σdA  = σ(2πrdr).

dE=σz4ϵ02rdr(z2+r2)3/2.

E=dE=σ2ϵ0(1zz2+R2).

For R → ∞ (infinite sheet)

E=σ2ϵ0.

Electric Field Line

Electric Dipole *

Electric Field Due to Electric Dipole

E=E(+)E()=14πϵ0qr(+)214πϵ0qr()2==q2πϵ0z3d(1(d2z)2)2.

If z ≫ d

E=12πϵ0qdz3

  • qd is the electric dipole moment p⃗

On the axis of the dipole

Edipole14πϵ0pr3

On the perpendicular plane

Edipole14πϵ0pr3

Dipole in Electric Field

τ⃗ = Fdsin θ = p⃗ × E⃗.

U =  − W =  − ∫τdθ  = ∫pEsin θdθ  =  − pEcos θ =  − p⃗ ⋅ E⃗


Ch. 23 Gauss’s Law

ϵ0Φ = ϵ0E⃗ ⋅ d  = qenclosed

AEdA=VEdV=qencϵ0.

  • Gauss’s Law is equivalent with Coulomb’s Law.
  • Planar Symmetry
  • Cylindrical Symmetry

Charged Isolated Conductor

  • There can be no excess charge at any point within a solid conductor
  • Electric field inside a conductor needs to be zero
  • Charge on the inner wall cannot produce and electric field in the shell to affect the charge on the outer wall

Electrostatic Shielding


Ch. 24 Electric Potential

ΔU = Uf − Ui =  − Wby the field

V = Vf − Vi =  − ∫ifE⃗ ⋅ d .

i is at , where U is 0, Vi is 0.

  • Electric potential for a point charge

V=14πϵ0qr

  • Potential due to electric dipole

V=V(+)+V()==14πϵ0pcosθr2

  • Field from Potential

Es=Vs.

E⃗ =  − ∇V


Ch. 25 Capacitance

q = CV

  • Parallel capacitor

C=qV=ϵ0EAEd=ϵ0Ad.

  • Cylindrical capacitor

q = ϵ0EA = ϵ0E(2πrL)

V=+Eds=q2πϵ0Lbadrr=q2πϵ0Lln(ba)

C=qV=2πϵ0Lln(b/a)

  • Spherical capacitor

C=4πϵ0abba.

  • Series & Parallel

  • Energy stored

dW=vdq=qdqC

W=0WdW=1C0Qqdq=Q22CU=12CV2=12QV

  • Energy density

u=12CV2Ad=12ϵ0E2

  • Dielectric

ϵ = κϵ0

E=Vd=qCd=qdϵ0A/d=σϵ0

E=σσiϵ0=E0Kσi=σ(11K)(induced surface charge density)

ϵ0κE⃗ ⋅ d  = q


Ch. 26 Current and Resistance

Current

i=dqdt

Current is NOT a vector

  • Current density

i=qt=nALeL/vd=nAevd.

J⃗ = (ne)v⃗d

Resistance

  • Resistivity

ρ=EJ

  • Resistance

ρ=V/LI/AR=VI=ρLA.

Ohm’s Law

For Ohmic contact cases

V = iR


Ch. 27 Circuits

  • Kirchhoff’s Rules

I = 0,  ∑V = 0

  • Mark for RC Circuit

Ch. 28 Magnetic Field

  • On Moving Charge

F⃗ = qv⃗ × B⃗

  • Hall Effect

n=BiVle

  • On a Current Carrying Conductor

F⃗B = il⃗ × B⃗

  • Magnetic Dipoles

μ = NiA

τ=μ×B


Ch. 29 Magnetic Fields Due to Currents

  • Biot-Savart Law

d\bmB=μ04πid\bml×\bmerr2

  • For B-Field of a wire with steady current

B=μ0i2πR

  • B-Field at the center of a circular arc of wire

B=dB=0ϕμ04πiRdϕR2=μ0i4πR0ϕdϕ=μ0iϕ4πR

  • Gauss’ Law for magnetism

B⃗ ⋅ d  = 0

  • Ampere’s Law

B⃗ ⋅ d  = μ0Iencl

lB ⋅ d𝐥  = μ0AJ ⋅ d𝐀 

  • B-Field of solenoid

BL = μ0nLI

  • B-Field of toroid

B=μ0NI2πr

  • Current sheet

B=12μ0Js


Ch. 30 Induction and Inductance

Laws of Induction

  • Lenz’s Law
  • Faraday’s Law of Induction

E=dΦBdt

ddtABdA=lEdl

×E=dBdt

  • Eddy Current

Inductors

  • Self induction

EL=Ldidt

L=NΦBi

  • Inductance of an ideal solenoid

L = μ0n2lA

  • Inductance of a toroid

L=μ0N2b2πlnr2r1

RL Circuit

Ei(t)RLdidt=0didt+iRL=EL

i(t)=ER(1et/τL),τL=L/R

  • Energy stored in magnetic field

iE=Lididt+i2RUB=0tLidi=12Li2

  • Energy density of magnetic field

uB=Li22Al=UBAl=μ0n2Ai22A=μ0n2i22=B22μ0

Mutual Induction

E2=Mdi1dt,E1=Mdi2dt


Ch. 31 EM Oscillation & AC Current *

UC=q22C,UB=Li22,

LdidtqC=0d2qdt2+qLC=0

Aω2cos(ωt+ϕ)+ALCcos(ωt+ϕ)=0,ω=1LC

Damped Oscillation in LRC Circuit

Forced Oscillations

  • capacitive reactance

XC=1ωdC

Voltage leads the current

  • inductive reactance

XL = ωdL

Voltage lags the current

  • Impedance

Z=R2+(XLXC)2,I=EZa

Power in AC Circuits

Pavg=ErmsIrmscosϕ,cosϕ=VREm=RZ

Transformers

V1I1=V2I2,V2V1=N2N1


Ch. 32 Maxwell’s Equations; Magnetism of Matter *

  • Integral Form

{A=VEdA=qencϵ0Gauss' LawA=VBdA=0Gauss' Law for B-Fieldl=AEdl=ddtABdAFaraday's Lawl=ABdl=μ0(AJdA+ϵ0ddtAEdA)Ampere' Law

  • Maxwell’s Law of Induction

lBdl=μ0ϵ0dΦEdt=μ0ϵ0ddtAEdA

  • displacement current

id=ϵ0dΦEdt

  • Differential Form

{E=ρϵ0B=0E=BtB=μ0(J+ϵ0Et)


Ch. 33 Electromagnetic Waves *

{2Bμ0ϵ02Bt2=02Eμ0ϵ02Et2=0{E(r,t)=E0cos(ωtkr+ϕ0)B(r,t)=B0cos(ωtkr+ϕ0)

k=|k|=ωc=2πλ

|E0B0|=c=1μ0ϵ0

Energy Transfer in EM Waves

utotal=ϵ0E2=ϵ0EBc=EBμ0

  • Poynting Vector

S=1μ0E×B

  • Intensity

I=Savg=E0B02μ0=E022μ0c=Erms2μ0c

average power4πr21r2

Polarization

When a unpolarized light passes through a polarizer, half of the intensity is loss

I12I0

I2 = I1cos2ϕ

Reflection & Refraction

  • Snell’s Law

sinθ1sinθ2=nwaternair,n=c/v=λvacuumλmedium

  • Fermat’s Principle in Optics
  • Total Internal Reflection

sinθcritical=n2n1

  • Light in a Raindrop *
  • Polarization bt reflection

θB=tan1n2n1


Ch. 35 Interference *

Young’s Interference

dsinθ=mλym=RtanθmRsinθm=Rmλd

  • Intensity of interference pattern

ϕ=2πdλsinθ,I=4I0cos212ϕ

Thin-Film Interference

  • Half wavelength shift

Ch. 36 Diffraction

Single Slit Diffraction

(of dark fringes)

sinθ=mλa

I=I0[sin(β/2)β/2]2,β=2πλasinθ

Single-Slit diffraction envelope in double slit interference

Diffraction on Multiple Slits

  • Principal Maxima

sin θn = nλ/d

  • Interference Minima

(Nd is the total width of N-slits)

sin θs = sλ/(Nd)

  • Subsidiary Maxima
  • Single-Slit Diffraction Envelope

Diffraction Gratings

  • Dispersion

The angular separation of two lines whose wavelengths differ by a certain amount

D=ΔθΔλ=mdcosθ

  • Resolving Power

Δθhw=λNdcosθR=λΔλ=Nm

  • Rayleigh’s criterion of resolvability

Ch. 37 Special Relativity

  • Lorentz’s Factor

γ=11u2/c2

  • Time dilation

t=11(v/c)2t=γt

  • Length contraction

L=L1(v/c)2=L/γ

  • Lorentz Transformation

u=u+v1+vu/c2