高等数学(下)期末复习:15.1 矩形上的二重与累次积分

15.1 矩形上的二重与累次积分 1

在 Calculus Ⅰ 里,通过黎曼和 2 定义了一元函数定积分的概念,对于二元函数也类似。

二重积分

考虑函数 \(f(x,y)\) 在一个矩形的区域上:

\[ R:\quad a\le x\le b,\quad c\le y \le d \]

可以分别沿 \(x\) \(y\) 方向把这个矩形区域分成很多小矩形,每一块称为一 个 partition,宽 \(\Delta x\),高 \(\Delta y\),有面 积 \(\Delta A=\Delta x \Delta y\)。长宽中较大的那个,称为这一个 partition 的 norm,记为 \(||P||\)

image-20200624142611464

假如我们给每一个 partition 编号,我们所关心的就是当 partition 的数量趋近于无穷大,也 就是当 partition 的 norm 趋近于 0 时的黎曼和:

\[ \lim_{||P|| \rightarrow 0} \sum^n_{k=1} {(fx_k,y_k) \Delta A_k} = \lim_{n \rightarrow \infty} \sum^n_{k=1} {(fx_k,y_k) \Delta A_k} \]

如果通过选择不同的 partition 划分方式进行求和,极限都存在(自然也需要相等),我们 就称函数 \(f\) 在这个区域上是可积的,这个极限就被称作 \(f\) \(R\) 上的二重积分 , 记 作

\[ \iint_R {f(x,y)dA} \quad \text{or} \quad \iint_R {f(x,y)dxdy} \]

连续函数和只在有限的点处不连续的函数都是可二重积分的。


作为体积的二重积分

如果 \(f(x,y)\) 在区域 \(R\) 上恒正,将每一个小长方体区域 \(f(x_k,y_k)\Delta A_k\) 加和, 当 \(n\) 趋近于零时,就可以近似于曲面下的体积,也就是二重积分。

image-20200727211935514

用以计算二重积分的 Fubini 定理

举例,若要求平面 \(z=4-x-y\) 矩形区域区域 \(0 \leq x \leq 2, 0 \leq y \leq 1\) 上形成的 体积,首先可以沿着垂直于 \(x\) 轴的方向进行切片,这样总体积就可以表示为每片体积的 和:

\[ \int^{x=2}_{x=0}{A(x)dx} \]

如图所示

image-20200727213006318

而面积又可以表示为积分

\[ A(x) = \int^{y=1}_{y=0}{(4-x-y)dy} \]

最终的结果可以简写成

\[ \int^2_1\int^1_0{(4-x-y)dydx} \]

也就是将一个二重积分转换为了可以一步步计算出来的 iterated 积分或者叫 做 repeated 积分

REMARK\(dy\) \(dx\) 的顺序具有特别的含义,需要按照从里到外的顺序来计算

如果选择不同的切片方式,会得到调换了顺序的积分式,但结果肯定是相同的。

定理 1:Fubini 定理(第一形式) \(f(x,y)\) 在矩形区 域 \(a \leq x \leq b, c \leq y \leq d\)连续,则有

\[ \iint_R f(x,y)dA = \int^d_c \int^b_a f(x,y)dxdy = \int^b_a \int^d_c f(x,y)dydx \]

Fubini 定理给了我们一种计算二重积分的方法,并且切片的选择方式不同会使得计算难度不 同。


  1. Double and Iterated Integrals over Rectangles↩︎

  2. Riemann Sums↩︎